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ABSTRACT

The spinning satellite dynamics problems defined by differential equa-
tions with constant coefficients, called autonomous systems, have received
considerable attention. This report concentrates on the far more compli-
cated problem of nonautonomous systems and in particular on the case in
which the coefficients are periodic. This type of problems has been
treated by means of Floquet's Theory but the treatment is somewhat unsatis-
factory since stability can be checked only for given sets of parameters.
The approach adopted here is broader in scopé. It can be regarded as
consisting of three complementing aspects: a Liapounov-type analysis, an
infinite determinant approach and an asymptotic expansion approach. The
first one is expected to yield the location of the instability regions
whereas the latter two should furnish the width of these regions as a
function of a small parameter € . The parameter ¢ 1Is related to the dif-
ference in the moments of inertia of a spinning satellite about transverse
axes and in many practical satellites this difference is made small s0 as
to minimize periodic torques resulting from gravitational forces, etc.

For the Liapounov-type analysis a new theorem, more suitable for the class
of problems under investigation, has been §r0posed. The infinite deter-
minant approach as well as the asymptotic expansion approach are_believed
to be used for the first time for the treatment of prdbléms involving

gyrgscopic terms.
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I. Introduction.

This report covers thé investigation of the stability of motion of
spinning, passive satellites conducted during the period December 1, 1965 -
May 31, 1966. In contrast with the first six-month period, the research
done during this period concentrates heavily on nonautonomous systems and
in particular on systems with periodic coefficients.

During the present period some attention has been given to the prob-
lem of stability of motion of a spinning, rigid, symmetric satellite under
the influence of aerodynamic and gravitatibna.l torques. The aerodynamic
torques may play an important role in the stability of motion of relatively
low-altitude satellites and it was felt that an investigation of this
particular aspect of the problem should be beneficial. A study was con-
ducted on the stability of motion of such a satellite moving in a circular
orbit. The governing differential equations of motion for this problem
have constant coefficients, hence they are autonomous. It follows that the
stability of motion could be studied using the Liapounov direct method as
was employed on a different problem during the previous report period.(l)*
The work discussing the combined aerodynamic and gravitational effects has
been submitted for publication in a national journal and will not be pre-
sented in this progress report. It should be mentioned, however, that in
this particular problem the aerbdynamic torques could be described by a
potential function, a factor which made that analysis possible.

The major effort of this report period was devoted to the development
of mathematical techniques for the investigation of the stability of motion
of a satellite for the case in which the motion can be described by ordinary
differential equations with periodic coefficients. A large number of im-
portant satellite dynamics problems are of this type, including the
following -

*
A paper describing this problem has been accepted for publication

by the Journal of the Astronautical Sciences.




a. Spimming, rigid, unsymmetrical satellite in a circular orbit.

b. Spinning, rigid, symmetrical satellite in an elliptic orbit.

c. Rigid, symmetrical satellite with elastically connected
moving parts moving in a circular orbit and possessing an
angular motion relative to an orbiting frame of reference.

d. Spimning, rigid, symmetrical satellite in a circular orbit
under the influence of periodic torques due to solar pressure.

e. Spinning, rigid, symmetrical satellite in a circular orbit
under the influence of torques due to passége through an
atmosphere with nonconstant density.

The first two of the problems listed above have been studied by Kane
et.al-(a)(?’) using an analysis based on Floguet's Theory.(ls) This analysis
involves numerical integration of the linearized equations of motion for
specific values of the parameters of the problem. Since that is an infin-
itesimal analysis, conclusive statements can be made only about the insta-
bility of motion and, furthermore, it is restricted to individual points in
the parameter space and it does not present a continuous picture.

In the present study attempts are being made to obtain analytical re-
lationships with which regions (rather than individual points) in the param-
eter space may be checked for stability. For the purpose of developing the
required analytical techniques, a two-degree-of-freedom system consisting
of a rigid, spinning body with two moments of inertia almost equal is being
studied. The body moves in a circular orbit. The problem formulation is
shown in Section II. Three methods of analysis are being explored and their
feasibility evaluated. . ,

Sections III, IV and V describe the techniques being applied in the
current study of periodic systems. Section III presents a stability theorem
similar to the one of Liapounov, which has promise of more satisfactory
adaptation to nonautonomous systems and in particular to systems with peri-
odic coefficients. A discussion is presented in which it is shown that the
difference between the Hamiltonian and the Hamiltonian at an equillibrium

position is a reasonable testing function and the corresponding theorem is



applied to the two-degree-of-freedom system. Section IV describes analysis
based upon the infinite determinant idea. The analysis allows for the
estimation of the resonance instability regions for a linear system. Sec-
tion V presents a similar approach for determining the regions of instabil-
ity, but is based upon an asymptotic expansion of the solution in terms of
a small parameter.

During the next report period the present work with nonautonomous

systems will be continued.

JI. Spinning, Unsymmetrical Satellite in a Circular Orbit. Problem Formu-
lation.

We shall be concerned with the problem o:I." stability of motion of a
spinning, unsymmetrical, rigid satellite in a circular orbit. When the
satellite possesses rotational motion relative to an orbiting frame of ref-
erence the problem formulation involves periodic coefficients. Hence, we
shall be interested in developing techniques for the treatment of syétems
with periodic coefficients. The same techniques, with slight modifications,
should be applicable to an entire breed of problems such as the ones listed
in the preceding section.

Previous work(l) has shown that for i'igid bodies there is no coupling
between the orbital motion of the center of mass of the body and the atti-~
tude motion of the body about the center of mass. This assumption, referred
to as orbital constraints, will be used in the present study.

Particular emphasis will be placed upon the case in which the body is
nearly, but not exactly, symmetrical with respect to the spin axis. It is
felt that this is a case of great interest since, for spin-stabilized satelf
lites, a practical satellite system would be made nearly symmetrical with
respect to the spin axis to minimize the periodic excitations caused by

gravitational torques.



1. Coordinate systems.

An orbital frame of reference with its origin at the satellite
center of mass and its orientation, as shown in Figure la, is chosen.
Axis a is along a radial line from the center of force {center of the
earth) to the center of the satellite, axis b along the orbit path,
and axis c perpendicular to axes a and b. The orbit angular velocity,
denoted by QO, is related to the constant K, which is the product of
the universal gravitational constant times the earth's mass, and the
orbit radius R, by 0,2 = K/R3. Hence a, b, c forms an orbiting
frame of reference. The orientation of the satellite relative to the
a, b, ¢ reference system is obtained by three successive rotations
92, 91, and ¢ as shown on Figure 1lb.

The z axis is taken as the spin axis and the mass moments of in-
ertia about the axes x, y and z are denoted by A, B and C, respect-
ively.

The direction cosines between the x, y, z axes and the a, b, ¢

axes may be written in terms of the following matrix equation:

_ - .
x "'xa. £xb !'xc a
y = l'ya- l'y'b Lyc b
z Ll'za l'zb ch ] ¢

(1)

[ - - - R
cb oCP s0 lsS 5P cb 159 s0 o9 ch 259 159 a

= '-ceescp - selsezccp celccp seescp - ceaselccp b

sb 2c9 1 s0 ch 2c9 1 ] c

1

where c92 = cos 92, sel = sin 91, etc. The angular velocities about

the x, y, and z axes may be written
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Q_ =0, (-seaccp - ceeselscp) + 8,008,590 - 0, cp
Qy =Q, (seequ - ceeselct?) +0,c8,cp + 0,59 (2)
02 =0, (cSacel) + 92591 + @

We will introduce the following dimensionless quantities:

r = C/A, e = (B - A)/a,
. (3)
a = cp/no, o = wo/ﬂo
where (b is the instantaneous spin rate and w, is the average spin
rate. Note that € is a measure of the asymmetry of the body with
respect to the spin axis and will generally be a small number as
mentioned previousiy.
2. Energy expressions.
The kinetic and potential energy expressions may be written as
follows
KE. =2a0° +2B05 +2c0d
2 2 Yy 2 z
()

P.E. = - [(c +B - A)JL2 +(C +A- 3)12

c"l»l”‘

+(A+B-C-)£§a]

3. The equations of motion.

The Lagrangian function, L = K.E. - P.E., may be used in conjunc-
tion with the lagrangian formulation to derive the differential equa-

tions of motion. For a conservative system, Lagrange's equations are

<E— .3-1-'- =0, (i=1,2,---,n) (5)

9

DJIQ:
o)



vhere n is the degree of freedom of the system. Equations (5) lead
to

= 2 :2 s o2 & o2
Gl + 9200c92 + 92 selca - QO(B ch,s0. - 62c9 c el)

1 22 1 2

. 2 s 02 ° 2
- ﬂgc 92591091 - r[@eacel + 61 selcel + f2092c92(c29l - s 91)

. 22, . _ 2 2 -
- Ov‘.ycezs'el - Qe uasulcel] + 3(1-1')005 Seselcel + € ielsgtp

e o .. o o @ 2 2
+ 20.059co + 6,c8,50c¢ ~ 8,8,50, 5cp + echcel(c ® - s°¢)
- 2 - -
+ 0092(0925 P + seaselstpctp) + 2 Q,$s,spcp - Qoelceacelstpctp
. 2 2. a2 22 2
- Oq:cezsel(c © - 579) + 8,6,50,s%cp + b, s8,c0.c%0

a 3 2, 2 A 3 2, 2
+ Qoeaseeselscpccp - 0092c925 Blc P + Qoelceacelscpc:p + noe 2c92c elc ®

) 2 2 2 \q1
+ Q5 (hseecezcelscpccp - cgeeselcelc P + 3s easelcelc ©v)] =0

Lad 2 e o * . 2 L) 2 3
92c 91 - 29291591c91 - QO(-Geseesechl + Glceec 61 - Blcezs el+ 91c62

A 2
+ 0_sb_sb cel) - 00(592c9

2 oo *e
558,88 5 " 562c92s 91) +r [cpsel + <p61cel

171

- 2 s 2 . . 2 2
+8,5%0, + 26,8,50,c0, + no(-easezselcel +8,c8,c%, - élcees 0,

. 2 2 2 2
+ ¢s0,c6, + 8,50 e c 61)] - 3(1-r) Qys8,e0,c70,

zselcel + 00?62

oo 02 e o 2 2 ~ 2 2
+ e[elcelscpccp - 67s8;50co + el:pcel(c - Q) + 8,c78,c% (6)

o e 2 e o 2 . .
- 20,8,88,c8,cp - 20,9c70, spcp + O (858,58, ,50c0 + éacelceescpccp

° 2 . 2 a1 2 A 2, 2
+ qacelseec © - cpcelsees © + eesazselcelc P - elceec Blc (s



. 2 2 - ) . 2 .
+ 91c925 elc © + 2cpc92selcelscpccp - Glceas © - 62c92celscpc(p

b a 2 2 2
-0 lsG 259 159cp - 8 58 259 1c8 1° ©) - hﬂo(se 2c9 oS P+ s%8 236 15%c®

2 ’ 2. 2.1
-c easelscpdp - seacees 8,c p)] =0

- had e o - . ‘2
rlp + 8,80, +6,8,c0, + 0 (-6,50,c0, - 8,0,80,)] - e [65spcp

3 2 2 22 2
+ Baelcel(c ® - s7p) - 82c

2 2
elscpctp + Qo(elseescpccp - élcezselc o}

e 2 . - » * 2
- 925920915 P + eeceeselcelsrpccp + elseescpc:p + elceesels ()

2 2 H 2 2
o+ 880,00, + B,08,50, 0, svcp) + Og(s 8,59 + 56,,0,56. 570
2 2, 2 2 ) 2
- seacezselc © - c 925 Blsc9ccp - 3c eascpc,o - 3562c82391c (]
~ 2 2, 2 _
+ 3592cezsels ® + 35 925 Blstpcq))] =0

k. Equilibrium positions. The linearized eguations of motion.

Inspection of the differential equations of motion, Egs. (6),

shovs that an equilibrium position exists when 8 = él =6, =6,=9

=0 and @ = :1?1_1'_[' This is the equilibrium position studied by De Bra

and Delp(h) in vhich the unsymmetrical rigid body has a position that
is fixed with respect to an orbiting frame of reference. The corres-
ponding equilibrium position was studied by Meirovitch(l) for the

.case of a rigid satellite with elastically connected moving parts.

We are now interested in the case in which the satellite has a spinning
motion relative to the orbiting frame of reference so that © and © are
not constant. However, we notice that by linearizing Egs. (6) the
equation for the coordinate ¢ becomes uncoupled, hence one can solve

for ¢ independently.



In view of the above conclusions, we wish to define an equilibrium
position 83 = 65 = 0. Ve note that 8y and 8, define the attitude of
the spin axis rélative to the orbiting frame of reference and 61 = 92
= 0 corresponds to the position in which the spin axis is perpendi-
cular to the orbit plane.

The equations of motion, Egs. (6), can be linearized about;. the
position 65 = 92 = 0. To this end it will prove convenient to change

the time scale to the nondimensional one defined by

2 2
. a d 2 4
T=0Q4%t, <=0 y = =0 = (1)
0 dt 0ar at2 0 3,2

so that Egs. (6) can be written as

1t

o, + 62'[2 -r(l +a)] - 91[1 -r(1 +a)l

+ e{ei (l - -12-'- r)(l + a)s2p + 6; [—;’- r(l + o)

8, -6, [2 -r(1 +a)] -92[)+ -r(h +a)l (8)
+e{9;[--2]-‘-r(1+a)+<l-32'-r>(l+a) cerp]
-9;(1-%‘-r>(1 + @) szp+91<l--;—r>(l+.a) s2p

-92[22'-1-(h+a)-<l-%—'r>(h+a)c2tp]}=o

vhere primes indicate differentiations with respect to T.



5. The spinning motion.

We notice from the third of Egs. (8) that, for motion in the neigh-
borhood of 91 = 92 = 0, the spinning motion is independent of the co-
ordinates el and 92. One can attempt a solution for © in terms of a

power series in ¢ = (B - A)/A as follows

. .
@ = w5t + e, (t) + T () + - (9)

from which it follows immediaztely that
t t
=+ ¢ cpl('r) + e&pz(-r) + —== (10)

- Substituting the above into the third of Egs. (8), and equating terms
of equa.l‘powers of ¢ to zero, we obtain a sequence of ordinary differ-
ential equations. The sequential solution of these differential

equations allows one to write

a=,al+e<f’razcmlf>+52<;2;—z§-cha17>

+

3 9
0| —Z——(c 6o, T +15 c 20.T) | + ==
[ 207+8r30tl5 1 1 ]

c2p c2le+e[32(chle-1)] . (11)

8rozl

. o ) _
+¢ (c 60,7 - c 20.T) | + ===
[ oo ]

s29p s2rzzl'r+\=:<8i’w2 shal'x‘)
1

4+

ez[fﬂ‘”ﬁ“”"’f)]*“'
I‘dl : )
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An alternate approach that will also prove useful results from
noting that the third of Egs. (8) can be integrated once to yield

1/2
$=uy[1+3 552 (12)
g

6. The Hamiltonian function.

Our interest is in the motion about the point 6, = 92 =0. In
this neighborhood, as can be seen from the third of Egs. (8), the co-
ordinate ¢ can be considered as an explicit function of time. One
can conceive of a constrained system as a system identical with the
system under consideration but with the ¢ coordinate a knowvn function
of time, namely the solution of the third of Egs. (8). When 6, and
8, are not small, the motion of this system is not in accordance with
the complete, nonlinear equations which indicates that constraint
forces must be added. However, as 61 and 92 approach zero, the terms
coupling the ¢ motion with the Sl and 62 motions approach zero and.
the constrain forces approach zero. As a result of this assumption,
one can devise a Hamiltonian function containing 61 and 92 as var-
iables and © as an explicit function of time. This Hamiltonian is

consistent only with the linearized equations and must be used only

when 6; and 65 are small. The Hamiltonian in question can be written

as
H = oL é + 8 =-]-'-A‘{.2 (l+esecp)+62 (c26 + rs°9
af, 1 a_é" “T32 1 2 1 1
+ € caelcecp) +¢ élé c6,529 + Q [ - r(e+ ce )2 262

2, 2 2, 2 2 2
8570, + 3(r - 1)s 8¢ el] + € 00[3(c925<p + selseeccp)

(8, s - ceaselc:p)el} | (13)



III. Liapounov-type Stability Analysis.

A stability theorem which is applicable to nonautonomous mechanical
systems (systems characterized by differential equations with time-dependent
coefficients) is presented. While similar to the theorem of Liapounov, the
proposed theorem broadens the scope in a manner which is found to be useful
in dealing with undamped systems with periodic coefficients. The difference
between the Hamiltonian and the Hamiltonian function evaluated at the equi-
librium position is shown to be a suitable function for testing the stability
of motion of the nonautonomous systems under consideration. The stability
theorem is applied to the problem developed in the preceding section.

The conclusive stability statement that can be made by means of the
Liapounov ’cype of analysis on autonomous systems (see Reference 1) would be
of great value if it could be made in connection with multi-degree-of-
freedom conservative® systems with periodic coefficients. Such an approach
may also be useful in locating regions of instability in linearized systems
with periodic coefficients. The periodic terms may enter the equations by
virtue of a periodically varying potential function or by means of assumed
periodic behavior of one, or more, coordihate that is not subject to the
stability investigation but appears in the form of known time-dependent co-
efficients. ‘ |

Given a system whose essential features are described by n/2 general-~
ized coordinates and n/2 generalized velocities (of course, n must be an
even number which is equal to twice the degree of freedom of the system),
xi(i = 1,2,---,n), an equilibrium position is said to exist at x; = cy,

(i = 1,2,---,n), where c; are constants, if these values satisfy the differ-
ential equations of motion. By a suitable coordinate transformation, any

equilibrium position of a mechanical system can be translated to the origin,
X} =Xy = === =Xy = 0, and this will be assumed to be the case in further

discussion. An equilibrium position will be defined as stable in the sense

*Conservative is used here in the sense that the external forces are
derivable from a potential function that is independent of the velocities
even though the potential function and the resulting forces may be time-
dependent.




of Liapounov(S)\ if there exist positive numbers ¢ a.nd T and time t, such that

o

n
Z xiz <e fort 2 ¢ (1)

i=1

0

for all motion subsequent to an initial perturbation from the equilibrium

position, where the initial perturbation satisfies

n
Z x:m2 ST att =ty (15)
=1

It should be noted that the equilibrium position may be defined in terms of
a restricted number of coordinates (for example the attitude stability prob-
lem of a spinning satellite may be defined in terms of the position of the
spin axis as in the case of the constrained system of Section II.6) and
other coordinates such as the orbit parameters or spin angle may appear as
time-dependent coefficients.

The Hamiltonian function has been widely used as a testing function,
in conjunction with the Liapounov stability analyses, in the case of autono-
mous mechanical systéms. Howvever, it has not been used in the case of sys-
tems with periodic coefficients. To discover why this had been the case,
let us consider an unconstrained conservative system with nonrotating coor-
~dinates. The usual forms of the Liapounov theorem state(6) that the motion
in the neighborhood of an equilibrium position will be stable if a fumetion
of the coordinates and time can be found which is positive definite in the
neighborhood of the equilibrium and has a negative or zero time derivative.
The total energy is a suitable Liapounov function in this nonrotating coor-
dinate problem, so the Liapounov theorem can be seen to require that the
total energy have a relative minimum at the equilibrium position and that
energy is elther dissipated or unchanged during any small motions near the
equilibrium. This latter requirement appears to be too stringent in the
case of systems with periodic coefiicients, since intuition tells us that a
stable equilibrium could exist such that energy could flow in and out of the

system during small motions near the equilibrium, as long as the net energy
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addition after a period of time is not a cumlative effect. Consequently,
the following stability theorem is suggested.

1. Stability theoren.

Given & system of equations described by the differential equa-

tions
is = Xs(xl:x.a,"""": Xn?t), (s = 1:2:“’:§) : (16)
for which an equilibrium position, E, exists at x; = Xp==== = Xp = o,

then the perturbed motion about this equilibrium position is said to
be stable if a continuous function V can be found such that
a. V(xl,xe, ---,nn,t) is positive definite in the neighbor-
hood of E, zero at E, and

t

av 2,2 2

b. ft = dt <= M (xlo+x20 4 ——- + xno)
o

for motion subsequent to t = to, in which M is any finite,
positive constant and x5, X ===3 X, are initial small
displacementsat t = to.

Proof of the preceding theorem is not given here because of lack
of space. Similar theorems giving the conditions for asymptotic
stability or instability may be developed in the same manner. It
should be noted that the preceding stability theorem gives conditions
that are sufficient for concluding that a given motion is stable but
does not give the necessary conditions. Consequently, stable motions
may exist which would not meet the requirements of this theorem.

To make use of the stability theorem it is necessary to select a
testing function which can have a relative minimum at an equilibrium
position and for which a meaningful value of the integral, Eq. (17),
can be obtained. The Hamiltonian function will be investigated for
this purpose and shown to be a reasonable choice based on physical
reasoning. This physical reasoning will be applied to a nonrotating

coordinate system before applying it to rotating systems.
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2. Testing function. Nonrotating coordinates.

First let us introduce the rotation:

K.E. = kinetic energy
- P.E. = potential energy
L = K.E. -~ P.E. = Lagrangian function
a; generalized coordinate
éi generalized velocity
P;

Y

By definition, the generalized mcmentum and generalized force

generalized momentum

]

i

generalized conservative force

are related to the Lagrangian by

_ L _ 3L
P1Tey 0 4 Tag (18)

Furthermore, we have the Lagrange's equations of motion for a conser-

vative system

a (oL _ 3L . -
gg(?rqi)-g—gi Ce By =0 (19)

which states that the time rate of change of the generalized momentum
is equal to the generalized conservative force. The definition of the
Hamiltonian is

H(q,p,t) = P;q; - L (q,9,t) | (=20)

e [~

from which we can derive the canonical equations of motion

oH * oH .
= P, = = . = 4. (21)
Sq_i i Q> 5pi i |
and also that

dH
Foa il (22)
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When a nonrc;tating coordinate system is used to describe a mechan-
ical system s'ulbjected to comservative external forces, the gbove gen-
eral relations take on special specizl forms such that the XkXinetic
energy is quadratic in the velocities, the potential energy is a func-
tion of only the spatial coordinates, the total energy (K.E. + P.E.)
is equal to the Hamiltonian, and the generalized force and momentum
are equal to the linear force and momentum.

In the absence of explicit time dependence in the Hamiltonian,
the total energy is constant. With time dependence the total energy
changes in accordance with Eg. (22).

Now we can consider the mechanisms through which an instability
exists in the neighborhood of an equilibrium position E (the origin).
If we consider motion near E in which the energy level is larger by an
amount AH than the energy level at E, we see that an instability could
exist due to exchange of energy between K.E. and P.E. in one or more
coordinates. But for a mechanical system, K.E. is positive definite
(i.e. K.E. increases as the p; depart from zero). So, if the motion
is not to diverge from the neighborhood of the equilibrium it is only
necessary that the potential energy increasesas a3 increase. More
specifically, along any path diverging from E, such as the path

T =a,q.e; + 80, + ce0 t @ Qe (23)

where a1 8yyeeey B aTE arbitrary positive constants, we require that

VP.E.'r = VH'pr = -Q°7 > O (24)

This essentially states that the generalized force Q; must act towards
the equilibrium. This is equivalent to the requirement that P.E. (and
H) have a relative minimum in the neighborhood of the origin. A key
element in the above discussion is that if H is time dependent, it is
reasonable to require that H be positive definite for all time and,
thus, would fulfill the first stability requirement of the proposed

theoren.
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Another possible mechanism for instability exists, even if H is
positive definite in the neighborhood of E. It is possible that the
energy of the system will build up over a period of time such that
the integral of the time derivative of the difference between the
energy of the motion and the energy at the equilibrium position in-
creases without bound t

=]
t

vhere HE is the Hamiltonian evaluated at the equilibrium position and

@ -H)at (25)
0

it is a function which depends on t only. If this integral increases
without bound, then unbounded values of one or more of the g; or a;
would be expected. Conversely, if this integral can be shown to be
bounded in accordance with the second requirement of the stability
theorem, the motion will be bounded and of ér‘bitraril;y small magni-
tude, depending upon the initial disturbance that is assumed.

No criterion is known to exist for the selection of an optimum
testing function for the purpose of a Liapounov type of stability
analysis. However, the above arguments give a physical interpretation
of the requirements on the Hamiltonian for a stable equilibrium to
exist in a nonautonomous system and shows the relationship between
these requirements and those of the proposed stability theorem. Conse-
quently, H - Hp appears as a likely choice for use as a testing func-

tion in conjunction with the proposed theorem.

3. Testing function. Rotating coordinates.

In this case the Hamiltonian can 'be_ shown to be

H.—i 4;p; -L =K.E.  +U (26)
1 .

*
where K.E. is the portion of the kinetic energy expression that is
quadratic in the velocities and U is the dynamic potential given by

U= PE, -~ Y (27)
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in which vy is the portion of the kinetic energy expression that does
not depend on the velocity. The discussion of the preceding section

is equally valid for the rotating coordinate system, except that we
must use K.E.* and U instead of K.E. and P.E., respectively. It should
be noted that the Hamiltonian is no longer equal to the total energy of
the system and the genera,liz'ed force and momentum are not, in general,
equal to the linear force and momentum. Once again the function V = H
- Hp appears 1o be a reasonablie testing function for use with the pro-

posed stability theorem.

k. General application of the stability theorem.

In many cases, the parameters of the problem can be specified so
as to satisfy the first condition of the stability theorem, namely that
the testing function V be positive definite in the neighborhood of the
equilibrium position, at all times. This may be done in a direct way
by proving that the Hessian matrix associated with V is positive de-
finite for all times or, alternately, by means of a comparison testing
function.(3) The latter consists of assuming that it is possible to
find a positive definite function W(x3,Xp, ---, x,) vhich does not
depend explicitly on t and such that

v(x,,x

1 9Xps =7 Xn’t) = w(xl’XQ’ === %) (28)

n

When the time dependence of V is periodic one may regard the function
V = ¢ as representing a pulsating n-dimensional surface. In order to
check the second stability requirement we must obtain information about
the integral '

t t
av 3V
I-= j 3 4t = j 5t 4t (29)
o Y '

In general, V will have the form of a series of terms consisting of a
periodic function multiplied by second, or higher, power functions of

the generalized coordinates gq; and generalized velocities éi' Conse-
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quently, we must at least know the form of the solution, g; and 4,
in order to determine the behavior of the integral, Eq. (29).
For some types of problems it is possible to state that the

solution is of the form

’ s iy.t
a =y 1, Die) e 9 (30)
3

where fj(i)(t) are nonperiodic functions of time (or constants) and
Yj are real numbers. Equation (29) can be re-expressed in the form

of terms such as

t .
J gz(t) e*%1Y cos wt at (31)
to

where w is the frequency of one of the periodic terms in the Hamil-
tonian. In the case of undamped systems in which the periodic terms
in the Hamiltonian are small (which is certainly the case in many
satellite dynamics problems) the gz(t) will be constant or slowly
varying functions of time and the integral, Eq. (31), will behave
like the product of trigonometric functions and will diverge only if
one of lhe Oy becomes equal to one of the frequencies in the periodic
forecing function. We will call this a resonance oscillation.

Estimation of the frequencies of oscillation of the system will
depend on the particular system under consideration. In some cases
it could be accomplished by means of Floquet 's theorem or an asymptotic
expansion in terms of a small parameter.

The conclusions can be stated as a corollary to the stability

theorem:

Corollary - An undamped system subjected to conservative forces and
characterized by differential equations and a Hamiltonian function
with periodic coefficients will admit stable motion in the neighbor-
hood of an equilibrium position if

a. the Hamiltonian function has a relative minimum at the

equilibrium position and
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b. no resonance occurs between the motion in the neighbor-
hood of the equilibrium and the periodic coefficients
in the Hamiltonian. X

In some cases, such as the following example, it may be desirable
to apply the stability theorem to a linearized system, in which case
the statement concerning the stability of motion éhould be regarded
as pertinent to the small motion only. Hence, in this case, stabil-
ity will occur in the indicated regions of the parameter space only

if the linear terms dominate the motion.

5. Application of the stability theorem to the spinning, unsymmetri-

cal satellite in a circular orbit.

Application of the proposed theorem to the problem of the spin-
ning, unsymmetrical, rigid satellite moving in a circular orbit will
now be undertaken. To this end we make the assumption that @ is an
explicit function of t so that we can use the Hamiltonian function as
given by Eq. (13). The Hamiltonian function evaluated at the equilib-

rium position, 85 = 62 = él = ée =0, is
H, = -;;A [-r (1 + 0)20(2) + 3803 satp} (32)

so that the testing function can be written as

2

_ SLa{e 21 . 82,2 2 2
V=E-H,=3A Sl(l+escp)+92(cel+rsel+ecelccp)

. o e 2 2

+e 86,8 529+ 0 [x(1 - c 8,c%,) + 2ra(1 - c0,c8,)
2 2 2 2, 2 2 .

-892-c92s91+3(r-1)sezcel]+eﬁo [3(c625cp+

2 .
591 592 cp) - 352<P - (592 s - 09259_13‘?)2] } (33)
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Recalling that V = K.E.* + U, where K.E.* includes the terms that
are gquadratic in the velocities and is a positive definite function
in the neighborhood of the egquilibrium position E, we can write the
dynamic potential, U, in the form

_ 1 2 2
U'- -2—A Qg [r(1 - ¢ Glc 92) +2ro (1 - celcez) - 5292

2 24 2 2 a)
-c 925291 +3{(r - 1) s 8,c8, + 3e_(ceescp + sBlseactp) (3%)

2 2
- 3¢ 59 - e(seascp - geaselccP) ]

As pointed out in Section 3 it is sufficient to check U for positive
definiteness rather that V.
It is easy to check that

ou )¢
Y- u N =0 (35)
116 l=9 2=0 2 2] l=9 2=0

vhich confirms the existence of the equilibrium at €3 = 62 = 0. To
determine the conditions for positive definiteness of U we apply
Sylvester'g criterion.(6) According to this criterion we conclude

that the system is stable if the following conditions are satisfied

2%y
2
361

= A ng [r(L +0o) -1 - ec2¢] >0

E
(36)

2 i .
32U§_2_U__ (aQU ) =A20,;[(r-l+ra)(1+r-h-+r0')

392 a92 391392

1 2 E

+ e(-br + 4 - bro + 3rclc2<P) - 1252s2cpc2cp] >0
It should be noted that if we let € = O we obtain the same stability
criteria as obtained by Pringle(7) and Likins(s) for the symmetrical

body. When € is not zero we obtain time dependent terms through o



and ¢. For small values of € we can determine the boundary of the
region within which U is positive definite by neglecting terms in
¢2. Writing the binomial expansion of Eq. (12) and retaining the

first two terms only, we obtain
AT, 46 o 2P = + € o (2¢% - 1) | (37)
=71 Eml 1 Kral
so that Egs. (36) become

M3 3% ]
r(l+cvl)-l-eLEa—l-+<l-2al>ccpJ>0

(38)
(r-1+ml)(3+r-ll-+ml) +e[<l; -hr-hrdl+m}§-%i->
(31'01 _____+;.gr\ cp]>0
1
The expansion used in Eg. (37) is valid only when 23"’1 < 1 and the
retention of the first two terms only is Justified when 3¢ << 1.

erey
Consequently, the above expression will not be used to investigate
the region in which ro; is small. In addition, we will consider
only the region in which « is positive and ¢ is sufficiently small
to neglect terms in €2. Under these restrictions Egs. (37) and (38)
may be extremized.by selecting czr.p to be zero or one. It is then
found that Eq. (38) is the most stringent requirement and that the
requirement for stable motion is satisfied if the following two
conditions are fulfilled: '

" 160 +1_1Cl 10
r>——-1: +¢
ll-d(cr

+Sozl+h)
X 5 (39)
r>-&I—:*'T +€mlal+



Figure 2 shows the resulting boundary of the stability region for
€ = 0 and € = 0.1, where the boundary for € = 0 is identical with
that shown by Pringle('n and Likins(B) for the symmetrical body.
The second part of the stability theorem can now be applied.
If we assume that the linearized equations describe the motion near
E, we may use Floguet's theorem(9) to state that the solutions are
of the form
1
-t (uJ. + iv j)1:
0, =), %5(t) e
J=1
N (40)
. (u'j + iv j) t
o, =2 gj(t) e :
J=1

in which fj(t) and gj(t) are periodic functions with the same period
as the periodic coefficients appearing in the differential equations
of motion, which is 2n/2m; in this case. Consequently, £5(t) and

gj(t) may be expanded in terms of Fourier series so that

N
© u,t i(v, +2km )t
- J J 0
el = 2 fjk e e
J:l k—ux
b © ujt :i.(v'j + zkmo)t
% =2 2 Bk ¢ °©
J=1 k==

In the neighborhood of the equilibrium position, we will neglect
terms in the third and higher powers of the coordinates and velocities
as small compared with second power terms, so that the partial deri-
vative of the testing function V with respect to time may be written
as

g% = %—HE-)- = % e AQ {al(éf_ - ég) s 20t + 2°’1é1é2 c 2myt

2173 N a2 3 N g2

2 2
+ aal a 8,6, c 2myt } + 0(e)
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Substituting Egs. (41) into Eq. (4#2) and integrating from t, to t we
" obtain an expression of the term

1= 2 2 Z hjku (aghag ) l(vj + 2t sin(ant + 8) at

J=1 l—l k=2
(43)
We must investigate four cases
(a) u3+u£vs 0, vj+v£+2k‘DO’é2wO
(v) uJ+uE>O, VJ+VL+2kmO;42mO
(c) uj+u£S0, vj+v£+2hno=2tbo (k)
(a) uj+uz>0, vj+v£+2k{.x)0=2w0

The first two cases are nonresonant cases, so that the value of the
integral varies periodically with time. Case (a) represents stable
motion whereas case (b) is clearly impossible since, for large t, the
Hamiltonian would oscillate with increasing amplitude, which is not
possible for a nonresonant case. Cases (c) and (@) correspond to re-
sonant motion. Case (c) represents bounded resonent motion and case
(d) represents divergent motion in which the Hamiltonian tends to
increase without bound with time. It is possible to say, however,
that unstable motion does not occur in the nonresonant case for which
the Hamiltonian is positive definite.

As the value of ¢ = (B - A)/A approaches zero, in the limit, the

motion must reduce to

imlt -imlt wat -imgt

91=a.lle +a.l2e +al3e +all}e
(15)
imlt -:imlt in t -l t
- 2 2
ez-aale +a22e +a23e +a2,+e
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Where Wy and w, are characteristic numbers associated with the

© equations

]
o

é'l' + 92' [o-r(1 + al)] - ef_ [1-r(1 + ozl)]
(46)

]
(o)

e;' - e; f2-r(1 + @)1 - 62 [hr(h + )]

The characteristic number have the values

a)l=Jb+4/b§-—c, w2=Jb-./b2-c

in which

=-1
2

o
|

Qf [1-r( - 2w)) - r2(1_ + @)
' (48)
¢ = -0 I - x(5+a) + 21 + o) (b + )]

A comparison of Egs. (¥1) and (45) shows that
(V1) (@)

Y2 !
:ﬁizﬁv3>=<w2$ (%9)

| Y ) L2

Consequently when € is small, Eqs. (i) lead us to the conclusion
that resonance must occur near the values

@, = mhy » Oy =D,

oaj.-i-m2=21m»0 >y o - = 2m

(m=%1, £2,---) (50)
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Figure 3 shows in the plane @; vs r the location near which re-
sonance will occur in the linearized system and for small e. It
should be noted that the present method gives us the location of in-
stability regions. To describe the width of these regions we must
choose different mgthods » as will be discussed in the next section.
It is interesting to note, however, that the existence of resonance
conditions is in contradiction with results obtained by Kane and
Shippy(e) » which showed stabilify to occur throughout these regions.
The stability conclusions reached in Reference (2), however, were
based upon spot-checking of the stability at a few fixed values of
spin rate and moments of inertia ratio. The results showing stability
at a number of points apparently led the above investigators to
believe that large regions were stable.

IV. Analysis Based on an Infinite Determinant.

A method similar to that employed by Bolotin{10) has been adapted for
use in defining the regions of resonance of the linearized system. The
present study represents a substantial advance in the use of this type of
analysis, including its application to a system of second order eguations
which contain the velocity terms that are typical of gyroscopic motions.
This method has been applied to the problem of the spinning, unsymmetrical

body.

l. Discussion of the motion of linear riodic systems.
3 M

According to Floquet's theorem, a system of n/2 second order
linear differential equations with periodic coefficients possess n

linearly independent solutions® of the form

t
{x(j)}+{f(j)}e.‘flnpj (i=1, 2,...n) (51)

*
Discrete characteristic multipliers are assumed.
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vhere the fk('j ) are periodic functions with period T and the pj are
called the characteristic multipliers. Note that

Inp=1n]|p|+1iargp (52)

The motion about the identically zero solution will be stable
if no characteristic multiplier has an absolute value that is greater
than one. Thoe motion will be asymptotically stable if all character-
istic multipliers have absolute values thé:b are less than one and will
be unstable if any characteristic multiplier bas an gbsolute value
that is greater than one.

The system under consideration is linear with periodic co-
efficients and has a Hamiltonian function from which the equations of

motion may be written in canonical form, i.e.

dp, dg. |
i _ oH L oH (53)

—_— = . , =
dat 5q_i dat Bpi

A theorem duve to Lia.pounov(s) states that for such a case the char-

acteristic multipliers occur in reciprocal pairs. Consequently, if

P
J
multiplier. Also the characteristic multipliers for the system under

is a characteristic multiplier, then l/ P 3 is also a characteristic

consideration occur in complex conjugate pairs X
A pair of particular solutions corresponding to reciprocal '
roots may be written

HORESFOR! Fley

| ¢ (54)
‘ {x0} [0} T ey

*Mis is not known to have been proven for the system under study.
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" The region of parameter space in which p j is real and different from
+ 1 is clearly the region of unstable motion, since one of the reci-
procal characteristic multipliers must be greater than one. Upon
fm_'ther variation of the parameters of the problem, the roots will
become complex conjugate pairs

py=a+id, p =pl =a-ib (55)
and since p jpk = 1 they will have an absolute value equal to one.
This then indicates that the region of complex pj is the region of
bounded motion. .Since the characteristic multipliers are continuous
functions of the parameters of the problem, the boundaries of the
i'egions of stability will be given by the cases when pairs of roots,
p=1lorp=-1, occur. But we can use Floguet's theorem to show

that
._-*-._q}.ln P.

t
= @+ e 6+ 1) }e T

t
= 1nop.
co, {Dwy I (56)

vhich, on the boundaries of the regions of instability, gives us

Py =1, 6 PR RN ) PR
(57)

Py 1, xj(t +T) = - x(j)(t)
The first of Egs. (57) tells us that a motion which is periodic
with period T will be admitted on a boundary where p = 1. The second
of Egs. (57) indicates that a motion that is periodic with period 2T
will be admitted on a boundary where p=-1l. In addition, any distinct
instability region (region of real characteristic multipliers) must
be bounded by a single value of p (i.e. p =1l or p = - 1). This is
seen to be true because, in order for the values p = 1 and p = -1 to
occur on different boundaries of a given instability region, it would

be necessary that p j= 0 and l/p 3= = gt some location within the
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instability region, since p is a continuous function of the parameters
of the system. But this is not possible. This leads to the formula-

tion of a stability theorem.

2. Stability theorem for linear systems.

Theorem
Periodic solutions with period T or 2T are admitted on the
boundaries between regions of stability and regions of instability in
canonical systems which are described by systems of linear differen=~
tial equations with periodic coefficients. Solutions of the same

period bound each distinct region of instability.

3. General application of the stability theoren.

Application of the preced:.ng stablllty theorem consists of in-
vestigations to define the locations in parameter space along which
solutions with period T or 2T can exist. Separate Fourier expansions
with period T and 2T may be made such that for period T we have

(s} 6} F b mae

n=1
(58)
£y {e, } cos 2
n=0
and for period 2T we can write :
= ; ot e
fd-l {ate ™ Ll omzp
n=- n=
(59)

[-+]
' nit
+2 {cn } cos 5
n=0



Either the exponential or trigonometric form of one of the above solu-
tions may be substituted into the differential equations and the re-
sulting coefficients of equal harmonics may be equated, giving an n
times infinite system of linear equations in terms of n times infinite
coefficients. For a nontrivial solution to exist, the determinant of
the coefficients must be zero. Evaluation of the infinite determinant
has been possible in the case of Hill's eq_uation(ll) » and this process
has been used further by Mettler(m) « In both cases, the equations
being studied are of the second order, and do not include velocity
terms. The same techniques do not appear applicable to systems with
gyroscopic terms.

In some cases, a reasonsble approximation may be achieved by
taking only the first few terms of the periodic expansion, Eq. (58) or
(59). This approach will be taken in the following example.

L. Determination of the regions of instability of a spinning, un-

syrmetrical satellite in a circular orbit.

The linearized equations of motion of a spinning, unsymmetrical

satellite in a circular orbit may be shown to be:

1 3 ] 1 .
Bl + 92 [-B + €<rl - E«Z) cos 2al'r + 61 er; sin eozl-r

o | 3 1 2y _
+ 92 er, sin 2T + el [B+l -€ (rl- KE{) cos 2T + 8(e") =0

e"+e'[s+e<r + 3>cosza'r]-9'er sin 207 (60)
2 771 17 ke 1 2 -1 1
. LAY
+Blerlsm2alf+§2[6+3r<1--2—>—2

+e(r2+l£-£>cos 2czl'r]+0(e:2) =0

in which
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B:r(crl+l)(l-%)-2

r, = (1-%)(1+cxl) '(61)
r2=(l--£-)(h+al)

and terms in the second and higher powers of € are grouped in the
terms 0(e®) and will be neglected. ' o

The regions of instability are bounded by periodic solutions
of period 2T and T which can be written in the form

Period 2T
©
6, = Z (aln sin no T + b, cos nozl'r)
n=l,3’5’ eoe
(62)
- _
92 = 2 (a2n sin noT + b, cos ncrl'r)
Period T
- -]
6, = Z (aln sin no T + by cos ncrl'r)
(63)
®
92 = 2 (a2n sin no T + b, cos nozl'r)
n=o,2’h’ L N 2

vhere advantage has been taken of the specific form of Egs. (60) in
eliminating the even n terms in Egs. (62) and the odd n terms in
Egs. (63).

The general procedure at this point consists of substituting

a finite number of terms of either Egs. (62) or (63) into the equations
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of motion, equating the coefficients of equal harmonics, setting up
the determinant of the coefficients of the assumed periodic series,
expanding this determinant, and solving the resulting ecuation for
the instability boundaries. ‘

Experience with this procedure tells us that for the problem
under consideration the use of only the n = 1 terms of Egs. (62)
will define a first approximation for the regions near =g and
@ = 0, where «; and w, are the natural frequencies of the unper-
turbed system. If we include the n = 3 terms also, we will obtain a
better approximation of the regions near W = @y and Wy, = @y, and
will obtain a first approximation of the regions near Wy = 3m0 and
a, = 3(00. As we include more terms, we improve the approximstion of
the lower order parametric resonances, and define regions at which
the natural frequencies are approximately equal to successively
higher odd multiples of the average spin frequency, Wy . When we use
Egs. (63) rather than Egs. (62), we define the even numbered regions
in a similar manner.

Inspection of Figure 2 of the previous section shows us that
regions near W = ano and w, = 2wy are to be expected for a satellite
configurations with 1 < r < 1.6. Ve can define these regions, in the

first approximation, by assuning

el = a; + bl sin 2czl'r + cl cos 2&17
(6k)
62 = a2 + b2 sin 20117 = c:2 cos 2al1'

Substitution into the equations of motion, Egs. (60), and equating
the constant terms, the coefficients of sin 2afl'r and the coefficients

of cos 204T to zero, we obtain the following six algebraic equations:
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16 mr>]~°

a (B +1) + b [alCrl-‘h%i->+% r, |+ cy

ale(i-'Il-g—)-beealsml(.naiwu):o

ajer; +b, [HP 4+ +3r(1-5)-2]-c20p =0

e, [B+3x(a-5)-2]+vefeg (- i>+%rl]
+ee [ogry +2(r2+£—l>]=0

ajer, + b (-hof +8 +1) + e [ayr) +2(r2+]£’——>]=0

(r2+17¢7>+b 2aB+c2[-h02+B+3r<l-—>-2]-0

For nontrimia.l solutions to exist, the determinant of the coeffi-

cients must be zero, whick in this case can be expressed as two 3 x 3

determinants.
Por elnGuod )k elon 26201
(1' 31 -2o:la hof +8 41 =0
ery —’-Ld+B+3r<1-—>-2 - 208
€ r.r 3 )V, 1 1 3 (€6
E3‘“31’@"2'/'2 L\l st 271 e["’1‘“’2‘ Tp t l/:l
er, -ha§_+B+l 2o, B =0
e<r2+]%£> 2o, B -lwz?_+s +3r<1-92->-2
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In the process of determiniﬁg the boundaries of the regions of in-
stability (which are surfaces in a1, T; € space) it is convenient to

express the value of o; in the following terms:

@,

20 = ﬁ('::“" e + Ae + eee (1 =1,2) (67)

s the natural frequency of the system in the absence of the

i
riodic terms in the equations of motion and is given by

=
9

: 2
[Be + 28 + 3r(1 - %)+ l] r2+26+3r(l -'—Z—) - l]
2 : 2

/> (68)
¥
<+ 43 (=) -a]}
and we will associate oy with the positive sign under the radical and
a, with the negative sign. The boundaries of the regions of instabil-

ity can then be expressed in terms of Eq. (67). We find that &; = O
and A2 takes on either of the follcw:.ng values

- 1 o 1.3 N
P = - (2dfpract- 283 ra1
2 (B+1) [l6c¥i + eal(-23-3r+1-32)] { ( \ -z F2 /

( - EEF) [ -T2 B+r o \ 8o +B+3r-l N ] - r§r2 (—lw% B+1 > +2a§riﬁ}

or

(69)

x 1 3N 2 ~
% " s\Io ¥ ~ho4841
2 (843r-2) [15a3l+gal(-23 -3r+1-82)] { 2\2 "Iy / 1#8+L )

- (rz + I;%I) Q‘uirl-alrlwlr 25+2°’?.r1 B3 “13) ML G EZ?:I) (-lrla?_+8+3r-2>

k—- B-’-La2+B+3r-2 ) }

Figure L4 shows the resulting stability boundaries for r = 1l.5.
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Y. Analysis Based on Asymptotic Expansion in Terms of a Small Parameter.

A method of analysis which is similar to that originated by Kryloff
and Bogolivbors (M%) and further developed by Bogoliuboff and Mitropols}ii(ls)
has beern emplcoyed. In contrast with these authors, however, the method
used in this case involves an expansion of the equations of motion using
assumed simultaneous resonance and nonresonance solutions. As a result,
one can define unstable regions of motion of a multi-degree-of-freedom sys-
tem including those regions in which resonance occurs between periodic terms
(i.e. 2nmo) and the sum or difference of natural frequencies (i.e. @ % u>2).
Systems involving gyroscopic terms have not been discussed in References
(14) or (15) and, to the principal investigator's knowledge, this is the
first time that ﬁhis type of asymptotic expansions has been employed for
the treatment of satellite dynamics problems. This method has been applied
to the problem of defining some of the instability regions of the unsymmet-
rical, spinning satellite, but will not be reported until a subsequent re-
port, when additional results are available.

The methods employed by Kryloff, Bogoliuboff, and Mitropolski are
generally applied to systems with equations of motion of the form

$+0°x=¢ P(x,%,t) (70)
in which € is a small parameter and f(x,%,t) is an arbitrary, periodic func-
tion of time and may be either linear or nonlinear in x and X. In the limit
(as € = 0) the motion is periodic and of the form

x =a cos (wt + 6) (72)

vhere a, w, and 8 are constant. We may look upon the left side of Eq. (70)
as the unperturbed equation and the terms on the right side will be re-

- garded as a perturbation. The assumption is then made that, for small e,
the amplitude and phase angle are no longer constant but functions of € and

time and may be expressed as
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da 2 3

(72)
ad

n

2 3
e&l +-€ 62+e O, 4+ eee

dt 3

The assumed solution is substituted into the equations of motion, the co-
efficients of every power of € is set equal to zero, and the resulting
algebraic equations are solved in succession.
Some problems of satellite dynamics may be expressed in the form
1 1 t

t 2
1 * 5192 +B9) =¢ fl(el, 8,8 92,1;) + 0(e%)

e 2) l)

i

; ' ' . (73)
82 + 6391 + 3492 =€ f2(61, 62, ®,, ee,t) + 0(e%)

" where in the 1imit, as € approaches zero, the solution becomes of the form

®

]

a cos (mlt +8) + b cos (wat + 52)

(74)

%

ak, sin (cnlt + 61) + bA,, sin (wat + 62)

in which w; and o are the natural frequencies of the unperturbed system,
a and b are arbitrary amplitudes, 61 and 62 are arbitrary phase angles, and
A, and )\2 are constants that are obtained in the process of solving the un-
perturbed equations of motion. We may assume in general that the functions
f, and f, appearing on the right side of Egs. (73) can be expressed in
terms of products of periodic functions (i.e. with frequency 2w0) and powers
of the coordinates and velocities, @, 92, Sl, and 52.

One can distinguish two significantly different types of -motion: re-
sonant ‘and nonresonant. Resonant motion will be shown to take place when
®; or ay, is sufficiently close to

fo +my, v, (4, mon=0, 11, t2,...) (75)

Use of the asymptotic method shows that the nonresonant motion will be stable

and bounded, and that resonant motion can be divergent (unstable). Further,
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following the approach described in the previous section, resonant motion
that is bounded and periodic may take place on the boundaries of the re-
gions of instability. The asymptotic method has been adapted to allow
calculation of the location of these boundaries.

Apparent advantages of the asymptotic method include its relative
ease of calculation of the instability boundaries, its ability to define
stability boundaries where the sum or difference of the natural frequencies
is resonance with a parametric excitation, and its possible applicability

to nonlinear systems.
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